Rank-deficient representations in the theta correspondence over finite fields arise from quantum codes

نویسندگان

چکیده

Let V V be a symplectic vector space and let alttext="mu"> μ encoding="application/x-tex">\mu the oscillator representation of S p left-parenthesis upper V right-parenthesis"> Sp ⁡ ( stretchy="false">) encoding="application/x-tex">\operatorname {Sp}(V) . It is natural to ask how tensor power representation alttext="mu Superscript circled-times t"> ⊗<!-- ⊗ <mml:mi>t encoding="application/x-tex">\mu ^{\otimes t} decomposes. If real space, then theta correspondence asserts that there one-one between irreducible subrepresentations irreps an orthogonal group O t O encoding="application/x-tex">O(t) well-known this duality fails over finite fields. Addressing situation, Gurevich Howe have recently assigned notion rank each representation. They show variant Theta continues hold fields, if one restricts attention maximal rank. The nature rank-deficient components was left open. Here, we all -subrepresentations arise from embeddings lower-order products overbar"> stretchy="false">¯<!-- ¯ </mml:mover> encoding="application/x-tex">\bar \mu into live on spaces been studied in quantum information theory as powers self-orthogonal Calderbank-Shor-Steane (CSS) codes. We find are labelled by groups r r encoding="application/x-tex">O(r) acting certain alttext="r"> encoding="application/x-tex">r -dimensional for alttext="r less-than-or-equal-to ≤<!-- ≤ encoding="application/x-tex">r\leq t results odd charachteristic “stable range” alttext="t half dimension 1 2 dim encoding="application/x-tex">t\leq \frac 12 \dim V Our work has implications Clifford group. can thought generalization known characterization invariants Clifford terms self-dual codes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full-Rank Perfect Codes over Finite Fields

In this paper, we propose a construction of fullrank q-ary 1-perfect codes over finite fields. This construction is a generalization of the Etzion and Vardy construction of fullrank binary 1-perfect codes (1994). Properties of i-components of q-ary Hamming codes are investigated and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1...

متن کامل

On non-full-rank perfect codes over finite fields

The paper deals with the perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). We show that the orthogonal code to the q-ary non-full-rank 1-perfect code of length n = (q − 1)/(q − 1) is a q-ary constant-weight code with Hamming weight equals to qm−1 where m is any natural number not less than two. We derive necessary and sufficient conditions for...

متن کامل

Constacyclic codes over finite fields

An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length lp are characterized, where p is the characteristic of the finite field and l is a prime different from p.

متن کامل

The Minimum Rank Problem over Finite Fields

Let Gk(F ) = {G | mr(F,G) ≤ k}, the set of simple graphs with minimum rank at most k. The problem of finding mr(F,G) and describing Gk(F ) has recently attracted considerable attention, particularly for the case in which F = R (see [Nyl96, CdV98, JD99, Hsi01, JS02, CHLW03, vdH03, BFH04, BvdHL04, HLR04, AHK05, BD05, BFH05a, BFH05b, BvdHL05, DK06, BF07]). The minimum rank problem over R is a sub-...

متن کامل

The reversible negacyclic codes over finite fields

In this paper, by investigating the factor of the x+1, we deduce that the structure of the reversible negacyclic code over the finite field Fq, where q is an odd prime power. Though studying q−cyclotomic cosets modulo 2n, we obtain the parameters of negacyclic BCH code of length n = q +1 2 , n = q−1 2(q−1) and n = q τ −1 2(qt+1) . Some optimal linear codes from negacyclic codes are given. Final...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of The American Mathematical Society

سال: 2021

ISSN: ['1088-4165']

DOI: https://doi.org/10.1090/ert/563